Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Nutr Biochem ; 117: 109321, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963730

RESUMO

Impaired glucose regulation is one of the most important risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which have become a major public health issue worldwide. Dysregulation of carbohydrate metabolism in liver has been shown to play a critical role in the development of glucose intolerance but the molecular mechanism has not yet been fully understood. In this study, we investigated the role of hepatic LCMT1 in the regulation of glucose homeostasis using a liver-specific LCMT1 knockout mouse model. The hepatocyte-specific deletion of LCMT1 significantly upregulated the hepatic glycogen synthesis and glycogen accumulation in liver. We found that the liver-specific knockout of LCMT1 improved high fat diet-induced glucose intolerance and insulin resistance. Consistently, the high fat diet-induced downregulation of glucokinase (GCK) and other important glycogen synthesis genes were reversed in LCMT1 knockout liver. In addition, the expression of GCK was significantly upregulated in MIHA cells treated with siRNA targeting LCMT1 and improved glycogen synthesis. In this study, we provided evidences to support the role of hepatic LCMT1 in the development of glucose intolerance induced by high fat diet and demonstrated that inhibiting LCMT1 could be a novel therapeutic strategy for the treatment of glucose metabolism disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Proteína O-Metiltransferase , Camundongos , Animais , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Metiltransferases/metabolismo , Proteína O-Metiltransferase/metabolismo
2.
J Plant Physiol ; 279: 153843, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265226

RESUMO

The biochemical function of LEUCINE CARBOXYL METHYLTRANSFERASE 1 (LCMT1) is to transfer a methyl group from the methyl donor S-adenosylmethionine (SAM) to the catalytic subunits of PROTEIN PHOSPHATASE 2A (PP2Ac), PP4 and PP6. This post-translational modification by LCMT1 is found throughout eukaryotes from yeast to animals and plants, indicating that its function is essential. However, Arabidopsis with knocked out LCMT1 still grows and develops almost normally, at least under optimal growth conditions. We therefore proposed that the presence of LCMT1 would be important under non-optimal growth conditions and favoured plant survival during evolution. To shed light on the physiological functions of plant LCMT1, phenotypes of the lcmt1 mutant and wild type Arabidopsis were compared under various conditions including exposure to heavy metals, variable chelator concentrations, and increased temperature. The lcmt1 mutant was found to be more susceptible to these environmental changes than wild type and resulted in poor growth of seedlings and rosette stage plants. Element analysis of rosette stage plants mainly showed a difference between the lcmt1 mutant and wild type regarding concentrations of sodium and boron, two-fold up or halved, respectively. In both lcmt1 and wild type, lack of EDTA in the growth medium resulted in enhanced concentration of copper, manganese, zinc and sulphur, and especially lcmt1 growth was hampered by these conditions. The altered phenotype in response to stress, the element and mRNA transcript analysis substantiate that LCMT1 has an important role in metal homeostasis and show that functional LCMT1 is necessary to prevent damages from heat, heavy metals or lack of chelator.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína O-Metiltransferase , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo , Leucina , Plantas/metabolismo , Homeostase , Quelantes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Nat Commun ; 12(1): 3531, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112794

RESUMO

Camptothecin and its derivatives are widely used for treating malignant tumors. Previous studies revealed only a limited number of candidate genes for camptothecin biosynthesis in Camptotheca acuminata, and it is still poorly understood how its biosynthesis of camptothecin has evolved. Here, we report a high-quality, chromosome-level C. acuminata genome assembly. We find that C. acuminata experiences an independent whole-genome duplication and numerous genes derive from it are related to camptothecin biosynthesis. Comparing with Catharanthus roseus, the loganic acid O-methyltransferase (LAMT) in C. acuminata fails to convert loganic acid into loganin. Instead, two secologanic acid synthases (SLASs) convert loganic acid to secologanic acid. The functional divergence of the LAMT gene and positive evolution of two SLAS genes, therefore, both contribute greatly to the camptothecin biosynthesis in C. acuminata. Our results emphasize the importance of high-quality genome assembly in identifying genetic changes in the evolutionary origin of a secondary metabolite.


Assuntos
Camptotheca/metabolismo , Camptotecina/metabolismo , Cromossomos/metabolismo , Genoma de Planta , Metabolismo Secundário/genética , Camptotheca/enzimologia , Camptotheca/genética , Camptotecina/biossíntese , Cromossomos/genética , Sistema Enzimático do Citocromo P-450 , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genes Duplicados , Genômica , Iridoides/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Filogenia , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo , RNA-Seq , Vimblastina/metabolismo
4.
Plant Physiol ; 185(3): 876-891, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793924

RESUMO

The hormone salicylic acid (SA) plays crucial roles in plant defense, stress responses, and in the regulation of plant growth and development. Whereas the biosynthetic pathways and biological functions of SA have been extensively studied, SA catabolism is less well understood. In this study, we report the identification and functional characterization of an FAD/NADH-dependent SA 1-hydroxylase from tomato (Solanum lycopersicum; SlSA1H), which catalyzes the oxidative decarboxylation of SA to catechol. Transcript levels of SlSA1H were highest in stems and its expression was correlated with the formation of the methylated catechol derivatives guaiacol and veratrole. Consistent with a role in SA catabolism, SlSA1H RNAi plants accumulated lower amounts of guaiacol and failed to produce any veratrole. Two O-methyltransferases involved in the conversion of catechol to guaiacol and guaiacol to veratrole were also functionally characterized. Subcellular localization analyses revealed the cytosolic localization of this degradation pathway. Phylogenetic analysis and functional characterization of SA1H homologs from other species indicated that this type of FAD/NADH-dependent SA 1-hydroxylases evolved recently within the Solanaceae family.


Assuntos
Oxigenases de Função Mista/metabolismo , Ácido Salicílico/metabolismo , Catecóis/metabolismo , Regulação da Expressão Gênica de Plantas , Guaiacol/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteína O-Metiltransferase/metabolismo
5.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669030

RESUMO

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants' defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors' level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases do Álcool/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Lignina/metabolismo , Peroxidase/metabolismo , Dormência de Plantas/genética , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteína O-Metiltransferase/metabolismo , Proteômica , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Superóxido Dismutase-1/metabolismo
6.
J Alzheimers Dis ; 79(4): 1813-1829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459709

RESUMO

BACKGROUND: The serine/threonine protein phosphatase, PP2A, is thought to play a central role in the molecular pathogenesis of Alzheimer's disease (AD), and the activity and substrate specificity of PP2A is regulated, in part, through methylation and demethylation of its catalytic subunit. Previously, we found that transgenic overexpression of the PP2A methyltransferase, LCMT-1, or the PP2A methylesterase, PME-1, altered the sensitivity of mice to impairments caused by acute exposure to synthetic oligomeric amyloid-ß (Aß). OBJECTIVE: Here we sought to test the possibility that these molecules also controlled sensitivity to impairments caused by chronically elevated levels of Aß produced in vivo. METHODS: To do this, we examined the effects of transgenic LCMT-1, or PME-1 overexpression on cognitive and electrophysiological impairments caused by chronic overexpression of mutant human APP in Tg2576 mice. RESULTS: We found that LCMT-1 overexpression prevented impairments in short-term spatial memory and synaptic plasticity in Tg2576 mice, without altering APP expression or soluble Aß levels. While the magnitude of the effects of PME-1 overexpression in Tg2576 mice was small and potentially confounded by the emergence of non-cognitive impairments, Tg2576 mice that overexpressed PME-1 showed a trend toward earlier onset and/or increased severity of cognitive and electrophysiological impairments. CONCLUSION: These data suggest that the PP2A methyltransferase, LCMT-1, and the PP2A methylesterase, PME-1, may participate in the molecular pathogenesis of AD by regulating sensitivity to the pathogenic effects of chronically elevated levels of Aß.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteína O-Metiltransferase/metabolismo , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/genética , Animais , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
7.
Nat Commun ; 11(1): 4914, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004788

RESUMO

Oxepinamides are derivatives of anthranilyl-containing tripeptides and share an oxepin ring and a fused pyrimidinone moiety. To the best of our knowledge, no studies have been reported on the elucidation of an oxepinamide biosynthetic pathway and conversion of a quinazolinone to a pyrimidinone-fused 1H-oxepin framework by a cytochrome P450 enzyme in fungal natural product biosynthesis. Here we report the isolation of oxepinamide F from Aspergillus ustus and identification of its biosynthetic pathway by gene deletion, heterologous expression, feeding experiments, and enzyme assays. The nonribosomal peptide synthase (NRPS) OpaA assembles the quinazolinone core with D-Phe incorporation. The cytochrome P450 enzyme OpaB catalyzes alone the oxepin ring formation. The flavoenzyme OpaC installs subsequently one hydroxyl group at the oxepin ring, accompanied by double bond migration. The epimerase OpaE changes the D-Phe residue back to L-form, which is essential for the final methylation by OpaF.


Assuntos
Amidas/metabolismo , Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Oxepinas/metabolismo , Amidas/química , Amidas/isolamento & purificação , Aspergillus/genética , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Hidroxilação , Isomerismo , Metilação , Oxepinas/química , Oxepinas/isolamento & purificação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo , Quinazolinonas/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(38): 23794-23801, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900960

RESUMO

Biotin plays an essential role in growth of mycobacteria. Synthesis of the cofactor is essential for Mycobacterium tuberculosis to establish and maintain chronic infections in a murine model of tuberculosis. Although the late steps of mycobacterial biotin synthesis, assembly of the heterocyclic rings, are thought to follow the canonical pathway, the mechanism of synthesis of the pimelic acid moiety that contributes most of the biotin carbon atoms is unknown. We report that the Mycobacterium smegmatis gene annotated as encoding Tam, an O-methyltransferase that monomethylates and detoxifies trans-aconitate, instead encodes a protein having the activity of BioC, an O-methyltransferase that methylates the free carboxyl of malonyl-ACP. The M. smegmatis Tam functionally replaced Escherichia coli BioC both in vivo and in vitro. Moreover, deletion of the M. smegmatis tam gene resulted in biotin auxotrophy, and addition of biotin to M. smegmatis cultures repressed tam gene transcription. Although its pathogenicity precluded in vivo studies, the M. tuberculosis Tam also replaced E. coli BioC both in vivo and in vitro and complemented biotin-independent growth of the M. smegmatis tam deletion mutant strain. Based on these data, we propose that the highly conserved mycobacterial tam genes be renamed bioCM. tuberculosis BioC presents a target for antituberculosis drugs which thus far have been directed at late reactions in the pathway with some success.


Assuntos
Biotina/biossíntese , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Redes e Vias Metabólicas , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteína O-Metiltransferase
9.
J Struct Biol ; 212(1): 107576, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682077

RESUMO

Metabolite damage control is a critical but poorly defined aspect of cellular biochemistry, which likely involves many of the so far functionally uncharacterized protein domain (domains of unknown function; DUFs). We have determined the crystal structure of the human DUF89 protein product of the C6ORF211 gene to 1.85 Å. The crystal structure shows that the protein contains a core α-ß-α fold with an active site-bound metal ion and α-helical bundle N-terminal cap, which are both conserved features of subfamily III DUF89 domains. The biochemical activities of the human protein are conserved with those of a previously characterized budding yeast homolog, where an in vitro phosphatase activity is supported by divalent cations that include Co2+, Ni2+, Mn2+ or Mg2+. Full steady-state kinetics parameters of human DUF89 using a standard PNPP phosphatase assay revealed a six times higher catalytic efficiency in presence of Co2+ compared to Mg2+. The human enzyme targets a number of phosphate substrates similar to the budding yeast homolog, while it lacks a previously indicated methyltransferase activity. The highest activity on substrate was observed with fructose-1-phosphate, a potent glycating agent, and thus human DUF89 phosphatase activity may also play a role in limiting the buildup of phospho-glycan species and their related damaged metabolites.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteína O-Metiltransferase/metabolismo , Especificidade por Substrato/fisiologia , Sítios de Ligação/fisiologia , Catálise , Humanos , Cinética , Metais/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
10.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 7): 320-325, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627748

RESUMO

Proline/alanine-rich sequence (PAS) polypeptides represent a novel class of biosynthetic polymers comprising repetitive sequences of the small proteinogenic amino acids L-proline, L-alanine and/or L-serine. PAS polymers are strongly hydrophilic and highly soluble in water, where they exhibit a natively disordered conformation without any detectable secondary or tertiary structure, similar to polyethylene glycol (PEG), which constitutes the most widely applied precipitant for protein crystallization to date. To investigate the potential of PAS polymers for structural studies by X-ray crystallography, two proteins that were successfully crystallized using PEG in the past, hen egg-white lysozyme and the Fragaria × ananassa O-methyltransferase, were subjected to crystallization screens with a 200-residue PAS polypeptide. The PAS polymer was applied as a precipitant using a vapor-diffusion setup that allowed individual optimization of the precipitant concentration in the droplet in the reservoir. As a result, crystals of both proteins showing high diffraction quality were obtained using the PAS precipitant. The genetic definition and precise macromolecular composition of PAS polymers, both in sequence and in length, distinguish them from all natural and synthetic polymers that have been utilized for protein crystallization so far, including PEG, and facilitate their adaptation for future applications. Thus, PAS polymers offer potential as novel precipitants for biomolecular crystallography.


Assuntos
Alanina/química , Cristalografia por Raios X/métodos , Peptídeos/química , Polietilenoglicóis/química , Prolina/química , Cristalização/métodos , Interações Hidrofóbicas e Hidrofílicas , Muramidase/química , Proteínas de Plantas/química , Proteína O-Metiltransferase/química , Solubilidade
11.
J Neurosci ; 40(23): 4596-4608, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32341098

RESUMO

Beta-amyloid (Aß) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aß produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aß-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aß oligomers in male and female mice heterozygous for either a PME-1 KO or an LCMT-1 gene-trap mutation. We found that heterozygous PME-1 KO mice were resistant to Aß-induced impairments in cognition and synaptic plasticity, whereas LCMT-1 gene-trap mice showed increased sensitivity to Aß-induced impairments. The heterozygous PME-1 KO mice produced normal levels of endogenous Aß and exhibited normal electrophysiological responses to picomolar concentrations of Aß, suggesting that reduced PME-1 expression in these animals protects against Aß-induced impairments without impacting normal physiological Aß functions. Together, these data provide additional support for roles for PME-1 and LCMT-1 in regulating sensitivity to Aß-induced impairments, and suggest that inhibition of PME-1 may constitute a viable therapeutic approach for selectively protecting against the pathologic actions of Aß in AD.SIGNIFICANCE STATEMENT Elevated levels of ß-amyloid (Aß) in the brain are thought to contribute to the cognitive impairments observed in Alzheimer's disease patients. Here we show that genetically reducing endogenous levels of the PP2A methylesterase, PME-1, prevents the cognitive and electrophysiological impairments caused by acute exposure to pathologic concentrations of Aß without impairing normal physiological Aß function or endogenous Aß production. Conversely, reducing endogenous levels of the PP2A methyltransferase, LCMT-1, increases sensitivity to Aß-induced impairments. These data offer additional insights into the molecular factors that control sensitivity to Aß-induced impairments, and suggest that inhibiting PME-1 may constitute a viable therapeutic avenue for preventing Aß-related impairments in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hidrolases de Éster Carboxílico/biossíntese , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/enzimologia , Proteína O-Metiltransferase/biossíntese , Animais , Hidrolases de Éster Carboxílico/genética , Disfunção Cognitiva/fisiopatologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Proteína O-Metiltransferase/genética
12.
Molecules ; 25(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075249

RESUMO

O-methylation of flavonoids is an important modification reaction that occurs in plants. O-methylation contributes to the structural diversity of flavonoids, which have several biological and pharmacological functions. In this study, an O-methyltransferase gene (CrOMT2) was isolated from the fruit peel of Citrus reticulata, which encoding a multifunctional O-methyltransferase and could effectively catalyze the methylation of 3'-, 5'-, and 7-OH of flavonoids with vicinal hydroxyl substitutions. Substrate preference assays indicated that this recombinant enzyme favored polymethoxylated flavones (PMF)-type substrates in vitro, thereby providing biochemical evidence for the potential role of the enzyme in plants. Additionally, the cytotoxicity of the methylated products from the enzymatic catalytic reaction was evaluated in vitro using human gastric cell lines SGC-7901 and BGC-823. The results showed that the in vitro cytotoxicity of the flavonoids with the unsaturated C2-C3 bond was increased after being methylated at position 3'. These combined results provide biochemical insight regarding CrOMT2 in vitro and indicate the in vitro cytotoxicity of the products methylated by its catalytic reaction.


Assuntos
Citrus/enzimologia , Citotoxinas/farmacologia , Flavonas/farmacologia , Proteínas de Plantas/química , Proteína O-Metiltransferase/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus/química , Citotoxinas/química , Citotoxinas/isolamento & purificação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Flavonas/química , Flavonas/isolamento & purificação , Frutas/química , Frutas/enzimologia , Humanos , Concentração Inibidora 50 , Metilação , Proteínas de Plantas/isolamento & purificação , Proteína O-Metiltransferase/isolamento & purificação , Especificidade por Substrato
13.
J Agric Food Chem ; 67(38): 10563-10576, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31487171

RESUMO

Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.


Assuntos
Cádmio/metabolismo , Melatonina/metabolismo , Solanum lycopersicum/metabolismo , Enxofre/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo
14.
PLoS One ; 14(5): e0217603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31145769

RESUMO

RNA methyltransferases post-transcriptionally add methyl groups to RNAs, which can regulate their fates and functions. Human BCDIN3D (Bicoid interacting 3 domain containing RNA methyltransferase) has been reported to specifically methylate the 5'-monophosphates of pre-miR-145 and cytoplasmic tRNAHis. Methylation of the 5'-monophosphate of pre-miR-145 blocks its cleavage by the miRNA generating enzyme Dicer, preventing generation of miR-145. Elevated expression of BCDIN3D has been associated with poor prognosis in breast cancer. However, the biological functions of BCDIN3D and its orthologs remain unknown. Here we studied the biological and molecular functions of CG1239, a Drosophila ortholog of BCDIN3D. We found that ovary-specific knockdown of Drosophila BCDIN3D causes female sterility. High-throughput sequencing revealed that miRNA and mRNA profiles are dysregulated in BCDIN3D knockdown ovaries. Pathway analysis showed that many of the dysregulated genes are involved in metabolic processes, ribonucleoprotein complex regulation, and translational control. Our results reveal BCDIN3D's biological role in female fertility and its molecular role in defining miRNA and mRNA profiles in ovaries.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fertilidade/genética , Metiltransferases/genética , Ovário/crescimento & desenvolvimento , Proteína O-Metiltransferase/genética , Animais , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Metabolismo/genética , Metilação , MicroRNAs/genética , Ovário/metabolismo , RNA Mensageiro/genética , Ribonuclease III/genética
15.
ACS Synth Biol ; 8(5): 1187-1194, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31042359

RESUMO

The microcystins are a large group of cyclic peptide hepatotoxins produced by several genera of freshwater cyanobacteria. The genes responsible for microcystin biosynthesis are encoded within a large (∼55 kbp) gene cluster, mcyA-J. The recent establishment of a cyanotoxin heterologous expression system in Escherichia coli has provided the means to study microcystin biosynthesis in a genetically tractable, rapidly growing host. Using this system, we demonstrate that deletion of the ABC-transporter, mcyH, and dehydrogenase, mcyI, abolishes microcystin production, while deletion of the O-methyltransferase, mcyJ, results in the production of the demethylated (DM) toxin [d-Asp3, DMAdda5]microcystin-LR. Both methylated and DM toxin variants were heterologously produced at high titers and efficiently exported into the extracellular medium, enabling easy purification. The results show that the mcy gene cluster can be engineered in E. coli to study the function of its individual components and direct the synthesis of particular microcystin variants. This technology could potentially be applied to other natural products of ecological and biomedical significance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Microcistinas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Microcistinas/análise , Microcistinas/química , Família Multigênica , Mutagênese , Proteína O-Metiltransferase/deficiência , Proteína O-Metiltransferase/genética , Espectrometria de Massas em Tandem
16.
Redox Rep ; 24(1): 1-9, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30898057

RESUMO

OBJECTIVES: Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase, is also known to be a target of ROS. The methylation of PP2A can be catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A activity and substrate specificity. METHODS: In the previous study, we have showed that LCMT1-dependent PP2Ac methylation arrests H2O2-induced cell oxidative stress damage. To explore the possible protective mechanism, we performed iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of H2O2-treated vector control and LCMT1-overexpressing cells. RESULTS: A total of 4480 non-redundant proteins and 3801 unique phosphopeptides were identified by this means. By comparing the H2O2-regulated proteins in LCMT1-overexpressing and vector control cells, we found that these differences were mainly related to protein phosphorylation, gene expression, protein maturation, the cytoskeleton and cell division. Further investigation of LCMT1 overexpression-specific regulated proteins under H2O2 treatment supported the idea that LCMT1 overexpression induced ageneral dephosphorylation of proteins and indicated increased expression of non-erythrocytic hemoglobin, inactivation of MAPK3 and regulation of proteins related to Rho signal transduction, which were known to be linked to the regulation of the cytoskeleton. DISCUSSION: These data provide proteomics and phosphoproteomics insights into the association of LCMT1-dependent PP2Ac methylation and oxidative stress and indirectly indicate that the methylation of PP2A plays an important role against oxidative stress.


Assuntos
Peróxido de Hidrogênio/farmacologia , Proteômica/métodos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Pharmacol Res ; 139: 512-523, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394318

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease which is characterized by aggregation of amyloid beta (Aß) and hyperphosphorylated tau. We previously reported that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, improved cognitive function and reduced Aß aggregation in APP/PS1 mice, a familial AD model. Here, we chose senescence-accelerated mouse prone 8 (SAMP8) mice, a widely used model of aging, to investigate the effect of PF11 on sporadic AD. PF11 was orally administered to male 6-month-old SAMP8 mice for 3 months. Consistent with previous studies, SAMP8 mice showed several AD-type pathologies including cognitive impairment, Aß deposition and tau hyperphosphorylation. We found increased protein levels of cytoplasmic amyloid precursor protein (APP) and ß-site APP cleavage enzyme 1 (BACE1) in the hippocampus and cortex of SAMP8 mice. The protein level of demethylated protein phosphatase 2A (PP2A) was elevated in SAMP8 animals and the protein level of leucine carboxyl methyltransferase 1 (LCMT-1) was reduced. PF11 attenuated learning and memory impairments in the novel object recognition test and Morris water maze. PF11 promoted the transport of APP from cytoplasm to plasma membrane and decreased the abnormally high expression of BACE1 in hippocampus and cortex of SAMP8 mice. The elevated protein level of demethylated PP2A and the reduced expression of LCMT-1 in hippocampus and cortex of SAMP8 were also attenuated by PF11. Together, our findings indicate that PF11 has beneficial effects on AD-like pathological changes in SAMP8 mice and may act by inhibiting amyloidogenic processing of APP and attenuating tau hyperphosphorylation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Ginsenosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Proteína O-Metiltransferase/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo
18.
Life Sci ; 213: 166-173, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340029

RESUMO

AIMS: Protein phosphatase methylesterase-1 (PME-1) is a serine hydrolase that catalyzes protein phosphatase 2A (PP2A) demethylation and negatively regulates its activity. PME-1 is compartmentalized within cells to precisely control the demethylation of PP2A. This study investigated the localization of PME-1 in human fibroblast cells (HDF) under oxidative stress. MAIN METHODS: Alkaline demethylation and peptide competition assays were applied to detect the methylation sensitivity of anti-PP2Ac. The localization of PME-1, leucine carboxyl methyltransferase 1 (LCMT1), demethylated-phosphorylated-PP2Ac (dem-p-PP2Ac) and total PP2Ac was determined by immunofluorescence analysis, and protein expression was measured by Western blot. A HEK293 cell line stably expressing constructed PME-1-EGFP was used to dynamically monitor the nuclear export of PME-1 under oxidative stress. KEY RESULTS: After hydrogen peroxide (H2O2) treatment, the protein expression of PME-1 remained unchanged, while PME-1 facilitated redistribution from the nucleus to the cytoplasm in HDF according to immunofluorescence analysis. In constructed HEK293 cells, the EGFP-tagged PME-1 was exported from the nucleus to the cytoplasm after H2O2 treatment, and nuclear export was eliminated after leptomycin B additions. Our observation of dem-p-PP2Ac species relocation from the nucleus to the cytoplasm under oxidative stress is consistent with the redistribution patterns of PME-1. Antioxidant N-acetyl cysteine can reverse the nuclear to cytoplasmic ratio of PME-1 proteins and dem-p-PP2Ac after H2O2 exposure. SIGNIFICANCE: We found that PME-1 is exported from the nucleus to the cytoplasm upon H2O2 treatment and redistributes dem-p-PP2Ac in subcellular compartments. These findings offer new insight into the regulation of PME-1 localization and PP2A demethylation under oxidative stress.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Peróxido de Hidrogênio/farmacologia , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Metilação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteína O-Metiltransferase , Proteína Fosfatase 2/metabolismo
19.
Biochemistry ; 57(37): 5379-5383, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30183269

RESUMO

The structure of the ribosomally synthesized and post-translationally modified peptide product mycofactocin is unknown. Recently, the first step in mycofactocin biosynthesis was shown to be catalyzed by MftC in two S-adenosylmethionine-dependent steps. In the first step, MftC catalyzes the oxidative decarboxylation of the MftA peptide to produce the styrene-containing intermediate MftA**, followed by a subsequent C-C bond formation to yield the lactam-containing MftA*. Here, we demonstrate the subsequent biosynthetic step catalyzed by MftE is specific for MftA*. The hydrolysis of MftA* leads to the formation of MftA(1-28) and 3-amino-5-[( p-hydroxyphenyl)methyl]-4,4-dimethyl-2-pyrrolidinone (AHDP). The hydrolysis reaction is Fe2+-dependent, and addition of the metal to the reaction mixture leads to a kobs of ∼0.2 min-1. Lastly, we validate the structure of AHDP by 1H, 13C, and COSY nuclear magnetic resonance techniques as well as mass spectrometry.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium/metabolismo , Proteína O-Metiltransferase/metabolismo , Pirrolidinonas/metabolismo , S-Adenosilmetionina/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(40): 10082-10087, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224484

RESUMO

Ribosome biogenesis is a multistep process, during which mistakes can occur at any step of pre-rRNA processing, modification, and ribosome assembly. Misprocessed rRNAs are usually detected and degraded by surveillance machineries. Recently, we identified a class of antisense ribosomal siRNAs (risiRNAs) that down-regulate pre-rRNAs through the nuclear RNAi pathway. To further understand the biological roles of risiRNAs, we conducted both forward and reverse genetic screens to search for more suppressor of siRNA (susi) mutants. We isolated a number of genes that are broadly conserved from yeast to humans and are involved in pre-rRNA modification and processing. Among them, SUSI-2(ceRRP8) is homologous to human RRP8 and engages in m1A methylation of the 26S rRNA. C27F2.4(ceBUD23) is an m7G-methyltransferase of the 18S rRNA. E02H1.1(ceDIMT1L) is a predicted m6(2)Am6(2)A-methyltransferase of the 18S rRNA. Mutation of these genes led to a deficiency in modification of rRNAs and elicited accumulation of risiRNAs, which further triggered the cytoplasmic-to-nuclear and cytoplasmic-to-nucleolar translocations of the Argonaute protein NRDE-3. The rRNA processing deficiency also resulted in accumulation of risiRNAs. We also isolated SUSI-3(RIOK-1), which is similar to human RIOK1, that cleaves the 20S rRNA to 18S. We further utilized RNAi and CRISPR-Cas9 technologies to perform candidate-based reverse genetic screens and identified additional pre-rRNA processing factors that suppressed risiRNA production. Therefore, we concluded that erroneous rRNAs can trigger risiRNA generation and subsequently, turn on the nuclear RNAi-mediated gene silencing pathway to inhibit pre-rRNA expression, which may provide a quality control mechanism to maintain homeostasis of rRNAs.


Assuntos
Inativação Gênica , Metiltransferases , Proteínas Nucleares , RNA Ribossômico 18S , RNA Ribossômico , RNA Interferente Pequeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína O-Metiltransferase , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...